ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Μερικές Διαφορικές Εξισώσεις
Εξίσωση θερμότητας ($\partial_{t} u-\sigma \nabla^2 u=0$)
Άπειρο χωρίο
Clear["Global`*"]
f[x_] := Which[0 < x < Pi, 0, x > Pi, 1]
PDE = D[v[x, t], t] == D[v[x, t], {x, 2}]
bound = Derivative[1, 0][v][0, t] == 0
init = v[x, 0] == f[x]
v[x, t] = X[x] T[t]
D[v[x, t], t] == D[v[x, t], {x, 2}]
ODEx = X''[x]/X[x] == -λ
ODEt = T'[t]/T[t] == -λ
Assuming[λ < 0, DSolve[ODEx, X[x], x]]
λ = 0
DSolve[ODEx, X[x], x]
Clear[λ]
λ = n^2
ODExSol = DSolve[{ODEx, X'[0] == 0}, X[x], x]
ODEtSol = DSolve[ODEt, T[t], t]
X[x] /. Flatten[ODExSol]
X[x_] := Evaluate[%]
T[t] /. Flatten[ODEtSol]
T[t_] := Evaluate[%]
v[x, t]
2/Pi Integrate[Cos[n x] f[x], {x, 0, Infinity}]
a[n_] := FourierCosTransform[f[x], x, n]
a[n]
Clear[v]
v[x_, t_] :=
Integrate[(Sqrt[2 Pi] DiracDelta[n] - (Sqrt[2/Pi] Sin[n Pi])/
n) E^(-n^2 t) Cos[n x], {n, 0, Infinity}]
v[x, t]
Static web notebook
Author kkoud
Created Thu 11 Sep 2025 10:14:38
Κώστας Κούδας | © 2025